<dfn id="jevhz"></dfn>
        1. <dfn id="jevhz"></dfn>
          加入收藏 在線留言 聯系我們
          關注微信
          手機掃一掃 立刻聯系商家
          全國服務熱線18030129916
          公司新聞
          要 Hug,不要 Bug 減少計劃外停機,以預測獲先機
          發布時間: 2023-04-10 08:41 更新時間: 2024-12-20 13:30
          觀看要 Hug,不要 Bug 減少計劃外停機,以預測獲先機視頻

           突如其來的設備故障,對于企業而言,就像隱藏在某處的 Bug,知其存在,但不知何時出現。這種“提心吊膽”對于任何企業而言都是巨大的危機。

            如何解決這一 Bug,讓隨時可能出現的“危”,變成運籌帷幄的“機”,成為了問題的關鍵——預測性分析軟件的選擇在這一過程中成為了企業的戰略性議題。

            01

            消滅 Bug 的前提

            預測分析與“未卜先知”

            對于計劃外停機等潛在危機的憂慮,導致了市場對預測性分析軟件的巨大需求增長:

            “據相關研究數據,未來幾年,全球預測性分析的市場規模將從 2022 年的 125 億美元增長到 2028 年的 380 億美元,復合年增長率為 20%。”

            這種廣闊的前景得益于日漸成熟的人工智能(AI)和機器學習(ML)技術和算法,大規模部署預測性分析的新方法,以及數據和系統的可用性和可維護性。

            面對市面上五花八門的預測性分析軟件,企業在權衡其潛在部署時,必須考慮一些變量,如投資回報率(ROI)。*終選擇的預測性分析軟件「是否與硬件無關」、「是否*適合利用現有的軟件投資」、「解決方案的部署、維護和擴展是否便捷」等等諸多因素都是企業要考慮的問題。

            02

            讓工具充分融合

            人類洞察力的力量

            人的經驗和直覺在評估潛在危機時發揮著重要作用,但因崗位和部門的差異,不同員工處在不同的特定專業領域,對于故障處理的“經驗”因此有很大的不同。例如,面對同樣的問題,來自工程或運營背景的人員在考慮事情時往往有著截然不同的思維方式。

            雖然許多預測性分析解決方案可以提供異常警報,但如果經驗不足,洞察力不夠,在面對異常警報的時候,迫在眉睫的危機也可能被忽視掉。因此企業在利用“人的洞察力”的同時,也必須承認團隊發現故障、解決故障過程中存在的主觀性。此刻,“工具”的優勢便凸顯出來了。

            理性精準的數字化技術和人的感性“經驗”相輔相成。既可「預測」——通過實時數據提供及時的故障診斷警報,亦可「分析」——解釋警報發出的原因。閉環預測分析戰略使企業有能力收集、組織和分析數據,包括實時傳感器、歷史操作和財務影響分析數據。

            在這些數據基礎之上,用戶可以立刻鎖定癥結所在,讓異常消失于萌芽之中。更重要的是,將相關數據記錄并復用,以實現持續改進。

            03

            故障診斷

            之重要性

            但機器的“預警”也不是百分之百準確的,有時警報的發出并不是計劃外停機的預警,而僅僅是傳感器出現的故障,這種“烏龍”大大降低了分析的準確性。不可靠的數據會給分析和決策蒙上“狼來了”的陰影。

            因此,**的預測性診斷需要“對癥下藥”,通過定制的數據和診斷工具提供**、實時的洞察。AVEVA 的預測性維護解決方案通過高效精準的故障診斷法預估可能發生故障的時間,有助于企業準確地確定維修的優先次序。

            故障發生時間的預測有助于運營和維護團隊“心中有譜”,從而確定是讓資產運行到下一次計劃的維護停工,還是啟動緊急停工。這也使團隊能夠更準確地預測潛在的供應鏈問題,并考慮備件的準備時間。同時,規定性分析還能夠提供可操作的任務來補救問題。

            這樣一來,計劃外的停機就被消除了。

            反之,相關預測也可以幫助操作員確定是否推遲計劃中的維護任務。工廠人員可以更有效地安排維修和評估風險,幫助企業優先考慮安全和盈利。

            04

            和數據“Hug”

            充分發揮數據作用

            伴隨著數字化腳步的高歌猛進,工業企業正在收集比以往更多的數據。據統計,所有工業數據中有50%是在過去兩年中產生的。

            在各種軟硬件的助力下,企業手中可能掌握著大量的數據,用來監測到其資產達到某個閾值,如溫度、熱率、燃料消耗、電力消耗等等。

            雖然這些指標可能代表了有價值的洞察力,但它們是靜態的。當條件發生變化時,企業就需要用多個參數來跟蹤和預期資產的任何偏差。因此一個更加動態的生產環境,就需要一個更加動態的過程。

            為了更大程度上發掘數據的潛力,企業必須建立一個「從工程到運營到資產管理到企業財務」的全面數據基礎設施,使用能夠整合所有相關信息來源的解決方案。

            AVEVA 的預測性維護軟件解決方案通過分析歷史行為,充分考慮多個閾值和變化模式,并實時跟蹤資產的實際狀況和實時操作條件,以預測未來可能出現的問題。

            這使得維護計劃更加有效,避免了資產的過度維護,并提供了資產模型、故障條件、故障模式、傳感器和實際故障匹配信息之間關系的清晰視圖,讓一切盡在掌握,從而運籌帷幄。

            05

            AVEVA 預測性維護

            讓計劃外停機消失于無形

            AVEVA 的預測性維護產品組合方案已迅速成為行業標配。通過將數字孿生技術與AVEVA? Predictive Analytics(預測維護軟件)相結合,從電力到化工,再到制造,為眾多來自工業領域的公司開辟了一條改善運營的全新道路。

            AVEVA 預測維護軟件是一種無代碼的解決方案,無需軟件工程師或數據科學家的支持,開發小白亦可輕松掌握。AVEVA 預測維護軟件基于人工智能技術提供了先進的警報和案例管理,實現了知識捕獲和報告。內置模板加速了軟件的配置、部署和擴展,確保*大的投資回報率。高效精準的故障診斷可以準確診斷故障模式。

            借助 AVEVA 預測性分析軟件,檢測系統實時運行數據與正常運營檔案的細微變化,企業可提前診斷設備問題,在設備故障發生的前幾天、幾周或幾個月便能診斷出問題,進而避免計劃外的停機。大量落地實踐也證實了 AVEVA 預測性維護軟件的可行性和先進性:

            三菱電力

            使用 AVEVA 預測維護軟件來提高其能源系統的運營意識,在防止意外停機的目標上取得了卓越成績。

            美國杜克能源公司

            利用 AVEVA 預測性維護軟件集中監測其發電資產,*大限度的提高資產的安全性、可靠性和生產績效,平臺上線后,僅在一次預警中就節省了超過 3400 萬美元。

            泰國暹羅化工集團

            借助 AVEVA 預測性維護軟件,通過可持續實時監控設備活動,將工廠可靠性從 98% 提高到了 ****,避免設備資產故障,這種節省相當于 9 倍的投資回報率。

            AVEVA 預測性維護軟件

            從超過 22000 個工時的經驗中得出的資產庫,AVEVA 預測維護軟件讓用戶了解“故障到來還有多久”以及“哪個問題要優先解決”,全面提升了預測能力,有效檢測企業性能問題并預測其資產故障,幫助企業由被動式維護轉變為主動式預測性維護,讓計劃外停機消失于無形。


          聯系方式

          • 電  話:0592-6372630
          • 銷售經理:蘭順長
          • 手  機:18030129916
          • 微  信:18030129916